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Matrices

10.1. Matrix

Definition. An arrangement of mn numbers belonging to a number
svstem F (real or complex) into m rows and n columns is called a matrix. of

order m x n over F. (K.U. 1981)
For example :
[2 -3 i : . :
@) 3 S 642|152 matrix of order 2 x 3,
as it has two rows and three columns.
1 8 -7
(1) 2 5 6 | is a matrix of order 3 x 3.
i1+2 0 4

(¢11) In general a matrix of order m x n can be written as

a1 @32 e Ay

which can be briefly written as [a;

q]m xn:

Note 1. We shall denote a matrix by capital latters, A, B, C ...... etc.
o 2.Theelement a;; is that which occurs in the ith row and Jth col. The first suffix
indicates row number, while the second suffix indicates the col. number.

3.’Members of the number system F are called scalars relative to the matrix.

4. '[he elements ayy, ay, aas, ......, a,, in which both suffixes are same, are
called the diagonal elements, all other are called non-diagonal elements.

Thus g;; is a diagonal element if i = j
and a;; is non-diagonal eletnents if ; = .
5. The line along which the diagonal elements.
11> 82); ----., Apy lie is called the Principal Diagonal.
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10.2. Different Types of Matrices

1. Zero Matrix or Null Matrix. A matrix each of whose element is
zero is called a zero matrix or null matrix.

0 0 0 0 0 0 0 0
eg., [ 0 0 0 ] or |0 Of or |O 0 O
0 0 0 0 0

are zero matrices gespectively of order 2x 3 ;3 x 2 and 3 x 3.
In general, a zero matrix of order m x n is denoted by O, » ..
Note. A matrix which is not a zeré-matrix is called a non-zero matrix.
\Vl./gquare matrix. A matrix in which the number of rows is equal to
the number of columns is called a Square matrix. _n
A square matrix of order n x n called square matrix of order n. - N
A matrix which is not square is called a rectangular matrix. (™

3. Row-matrix or Row-Vector. A matrix of type 1 x nLe., having
only one row is called a row-mgtrix. For example, [1, -3, ~7, i, 0] is 3 row-
matrix of order 1 x 5. (M.D.U. 1983)

4. Column-matrix or Column-vector. A matrix of type m x 1 iLe.,

having only one column is called a column-matrix. (M.D.U. 1983)
[
For example, | 7 | is a column matrix of order 3 x 1.
8

¢ 5. Diagonal Matrix. A square matrix in which all non-diagonal
elements are zero is called a diagonal matrix.

In symbols. The matrix A = [a;], x » is diagonal matrix if ¢; =0 for

- i =j. Thus
2 0 1 0 0
[ 0 8] ,]0 -5 0 |are diagonal matrices.
: h 0 0 0
X1 . 0 0
Note. The diagonal matrix | 0 '/xz 0| can be Hriefly written as
0 0 x3

diagonal [xy, X3, x3].

6. Scalar Matrix. A diagonal matrix in which all diagonal elements
are equal is called a scalar matrix.

In symbols. The square matrix A = [ x n i a scalar matrix if a;; = 0

-2 0 0
eg. 0 -2 0 | is a scalar matrix.
0 0 -2
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7. Unit Matrix or Identity Matrix. A scalarmatrix of order nin which
all diagonal elements are unity is called a unit or identity matrix and is
generally denoted by 1. (M.D.U. 1983)
In Symbols. A square matrix A = [ailuxn will be a unit or identity
matrix if _
(raz=0 for i=j and (i) aj=1fori=J.
8. Tri-angular Matrix. These are of two types :
" (a) Upper-triangular matrix. It is a matrix in which all elements
below the principal diagonal are zero

(1 -2 i
eg., 0 5 -7

{0 0 9

(b) Lower-triangular matrix. It is a matrix in which all elements
aboVe the Principal diagonal are zero 4
1 0 0

eg., «5 7 D

i 3 8 4. .

. . Sub-matrix. A matrix B obtained by deleting some rows or columns
or both of a matrix A, is called a sub-matrix of A.

1 2 5 7
For example,if A=|1 3 9 1|, thenthe matrices
0 0 1 2
1 2 5 2 5
[1~ 3 9],[3 9},[O,O,I,Z]e.tc.

are sub-matrices of A.

3. Equality of Matrices
Two matrices A = [@;i]m x » and B = [bij]p x q e equal, if and only if
(i) they are of the same order i.e. m =p andn=gq

(i) their comesponding elements are all equal ie., a;=Dbforall
fandj.

If A and B are two equal matrices, then we write A = B.
1074. Addition (sum) of two Matrices

We'can add two matrices only when they are of the same order and
two such matrices are said to be, conformable for addition.

Let A =[],y x n and B = [by], x » D tWO matrices of the same order
m x n, then their sum A + B is a matrix of the same order m x n and is obtained
by adding the corresponding elements of A and B.

Thus, if A = [@;]m x n» B = [Dij]m x n, then the sum

A+B=[aij]mx”+[bij]mxn=[ai}'+bij]mx,,-

- S
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Remarks. The elements of a matrix will be assumed
. < S5 :d to bel to some
system say of Rationals, Reals or Complex, SEa e
19.5. Properties of Matrix Addition
1. Matrix Addition is Commutative. i.c. if A and B are matrices of
the same order, then A + B= B + A. (M.D.U. 1983)
Proof. LHS.=A+B .
= [aij]m xnt [bij]m xn= [(a,} + bij)]m xn
= [(bu + aij)]m xn

[ Elements of matrices are commutative
for addition]
= [bylm xn + [45lmxn=B+ A=RHS.
2. Matrix Addition is Associative. If A, B, C be matrices of the same
order, then (A+B)+C=A+ (B +C).
Proof. LHS.=(A+B)+C
= ([aij]m xnt [bq]m x n) + [Cij]m xn
= [(aq + bq)]m xn¥t [Cij]m xn
= [(aq + bq) + Cilmxn
= [a;+ (bij + c)lmxn

[ For elements of matrices, addition
is associative]
= [at,]:n xnt ([bq]m xnt [qum xn)
=A+(B+C)=RHS.
Note. Because of associative property of addition, we write
(A+B)+C=A+(B+C)=A+B+C
3. Existence of Additive identity. Given any matrix A of orderm x n,
there exists a matrix O of order m x n, each of whose element is zero such that
A+0=A _
Note. The zero matrix O is called additive identity or a zero and is unique for
a set of all m x n matrices.

4. Existence of Additive Inverse. Given a matrix A of orderm x n;
their exists a matrix X also of the same order, so that
A+X=0
This matrix X = —[a;;] is called additive inverse or Negative of Aand
we shall denote it by (- A).
Thus if A = [a;], then — A = [~ a;].
Proofs of (3) and (4) are left to the reader as an exercise.

ﬁ0.6. Subtraction of Two Matrices

Let A and B be two matrices of the same order (type), then subtraction
of B from A is written as A — B and is defined as sum of A and —B.
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Thus. s A - B=A+(-B)

Hence A - B is obtained by subtracting trom ¢ ach element of A the
corresponding element of B.
10.7. Multiplication of a Matrix by a Scalar

Let A =]a, J « » be any matnx and k anv scalar, then the multiplication
of A bv the scalar & written as & A is a matrix of order m x n obtained by
multipl.ying cach element of A by the scalar k. Thus,

It A = [@jjlm x n then

kA = kluii]m xn = lk'a(i]m x ne

-1 2 7 8
Forexample.IfA=| 3 4 -2 7 |isamatrix of order3 x4
1 2 3 4

and 3 is a scalar, then
-5 10 35 40

SA=| 15 20 -10 35

5 10 15 20:

KHs. Properties of Multiplication of a Matrix by a Scalar
If A = [a;] and B = [b;j] be any twe matrices of the same type m x n
and x and y are scalars, then
() x{A+B)=xA+xB
(I (x+y)A=xA+yA
(iif) X(yA) = (3)A

(v) There exist a scalar 1 so that 1LA=A.

Proofs are easy and are left as an exercise to the readers.
\/l?ﬂ Muitiplication of Two Matrices.

Let A = [a;] and B = [b;] be two matrices, then the produced AB in
this osder is defined if the number of columns in A (pre-factor) = the number
of rows in B (post-factor), and ,

(i) Number of rows in AB = the number of rows in A.

(if) Number of columns in AB = the number of cols. in B.

(iti) The (i, )th element of AB = sum of products of the elements of ith
row of A with the corresponding elements of the jth column of B.

In Symbols. If A = [a;],,  , and B = [b;],, , , be two matrices, then the
product AB is defined and is a matrix of order m x p.

Let AB=C= [Cij]m xpr where
¢;;= (i, j)th element of C( = AB)

<

—p— -
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Jth

= (ith row of A) col.
of
B

| by
=2 ((I,‘] ap <.t ;) 7
= ailblj + (12,"72}' +...... + ai,,b,,]-
n
= 2 ayby.
k=1

Remarks. 1. If the product AB is defined, then the matrices A and B are said
to be conformable for multiplication AB.

2.1f AB is defined, BA may or may not be defined.
3. Method of multiplication is known as Row-by-Column method.
_/10.}o<§’mperties of Matrix Maultiplication

7 Property 1. Matrix Multiplication is associative. If A, B, C are

matrices of.the order m x n, n x p, p x q respectively, then
(AB)C = A(BC).
Proof. A is a matrix of order m x n, B is of ordex n x p.
AB is a matrix of order m x p ; C is a matrix of order p x g.
(AB)C is a matrix of type m x q.
Similarly, it is easy to see that A(BC) is a matrix of order m x g.
Thus (AB)C and A(BC) are matrices both of the same order.  ..(1)
Let A=[a,-j],,,x,,,B=[b,-l-],,xp,C=[c,-j!pxg.
Now (3, k)th element of the product AB

= sum of the products of elements of ith row of A and
kth col. of B

= 2 @by = dy (say)
I=1
Now (i, J)th element of the product (AB)C

= sum of the products of elements of ith row of AB
and jth column of C

P

2 dacy
k=1

P n

2 aﬂbm Cy

k=1 l=1

1]
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P n
= 2 2 (anby) cxj
k=1 1=1
P n
= E 2 @ (b cyj)
k=1 [I=1

[ Multiplication is associative for elements of matrices]
n P
= 2 a; 2 (blk ij,)
I=1 k=1
= Sum of the products of elements of ith row of A with
Jth column of BC
= (i, J)th element of A(BC) -(2)
From (1) and (2),
(AB)C = A(BO).

Note. (AB)C and A(BC) both are written = ABC.

Property 2. Distributive Laws :

If A, B, C are three matrices of type n;‘”x*n, n X p, nx p respectively,
then ' '

A1) AB+C)=AB+AC [Left : Distributive Law]

(M.D.U 1995)
(1) B+CA=BA+CA [Right : Distributive Law]

To prove A(B + C) = AB + AC.

A is a mairix of order m x n and (B + C) is a matrix of order n x p,
therefore A(B + C) is a matrix of order m x p. Similarly, each of the matrix
AB, ACis of order m x p.

AB + AC is a matrix of order m x p.
A(B + C) and AB + AC are matrices of the same order. (1)

Now (i, j)th element of A(B + C)

n
E " ay (by + cy)
k=1 = -
n
2 (ai by + ay cy)
k=1
[Using)"-distributivg law for elements]

n n

2 a; bkj + 2 a,-k'ck}-

k=1 k=1

= (4 j)th ele. of AB + (i, j)th ele. of AC

= (i, j)th ele. of (AB + AC) -(2)

== ——
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From (1) and (2),
A(B+C)=AB + AC.
Similarly (A + B)(C) = AC + BC.
Property 3. [f A be any n x n matrix, then

Al,=A= I,,At Proof is left to the reader as an exercise.

Property 4. Matrix Muitiplication is not commutative.

Prove that the product of matrices is not com
prove AB = BA, discussing all possibilities.

Proof. Case I.’AB is defined but BA is not defined.
Let A be of order 3 x 2 and B be of order 2 x 4.
AB is defined and is a matrix of order 3 x 4.
But BAisnotdefined .. AB=BA. =
Case. I1. AB and BA are both defined but are of different order.
Let A be of order 2 x 3 and matrix B of order 3 x 2.
AB is defined and is a matrix of order 2 x 2.
BA is also defined and is a matrix of order 3 x 3.
. AB = BA.

Case II1. AB and BA are both defined and both are of the same order,
yet AB = BA.

Let A= 2 3},B=[2 1]

mutative in general i.e.,

-1 4 7 5

L

be two square matrices of the same order 2 x 2.

2 37[2 11_[ 4+21 2415
aBs=| 4 3”7 5]' ~2+28 -1+zo]

L L

[25 17

=126 19|

72 1] 2 3]_[ 4-1  6+4
BA={ 4 5][-1 4]114-5 21+20]

3 10 )

HER:

Thus, AB = BA.

Property 5. Give an example of matrices A and B such that A = 0,
B = 0,but AB = 0.

Or  Prove that AB = 0, does not imply either A =0 or B=0.

Proof. Let .A=[1 i],5={_i g]

A=0,B=0
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)

(14 2k)(~= 4) + (- 4k)- 1)

1+2k - ]2
2[ k 1-2k |1
[

1
i
L

1 .
=" k34 1(1- 201 k-4 +(1-20) (- 1)
i:;u,: k-4 '

:L k+1 -2k-1

1+2(k+1) -4k+1) ~RHS. of (2).

={ k+1 1=-2(+1) RHS. of (2)

Thus. the result is true for 7 = k + 1, whenever it is true forn = k.
Hence by induction the result is true for all positive integers 7.
Example 4. Define the following and give one example of each :

» 11} Idempotent matrix
Cg 5 (@) Nipotent matrix
(1i1) Imvolutory matrix.
Sol. (i) A square matrix A is said to be Idempotent ifA’=A
2 -2 -4
\For example, the matrix A=| -1 3 4 | is idempotent.
1 -2 -3
(Verify that A” = A).
(if) A square matrix A is called Nilpotent if there: exists a poszttve
integer m such that A™ = O. If m is the least positive integer such that A™ =
then m is called the index of the nilpotent marrix A.
For example, the matrices [ fbaz 1_72 ab } : [ _ } _ } } are nilpotent
(Verify that A® = O).
Every upper tr%lar,mamx is mlpou:m
(itf) A square matrix A is said to be Involutory if A = I.

For example, the matrix A = [ 1/21— _ ‘/21} is ihvolutory.
“ Example 5. Show that the matrix A is involutory, zf and only if
o (I+4)(I-4)=0.
Sol. Let A be an involutory matrix of order n.
Then Al=1
= A’-1=0
= F-A2=0 ¢ =]
= (I-AxI+A)=0 R I
Conversely, if 1+ A)(1 ~ A) = o U AL

then P18+ Al A% =

L E CC—

e
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= I~ A+ Al - Al = (. 1A=Al)
= [-A’+0=0
= [-A’=0
= At=1 _

v y ~f o § *()
EXERCISE 10 (a) o L et
'} 1%~ Perform matrix multiplication AB, where
- 0 c -b a2 ab ac
A=|-c 0 al|andB=|ap K be
b -a 0 ac be *

N _[cosa sina

*_’2' IE das= -sina  cos o ] 7
then show that

AxAp = Aqsp = Ag. Aq.
;1'3. Find the product of the matrices :
1 0 1 i][1 - Z_
[i 1”—[ o“o 1]’“’“"’”“"'
e 2 3 4 1 3 0
e —IfA= 1 2 3landB=|-1 2 1
6 7k =i § B 0 0 2
Find AB, BA.Is AB=BA? (M.D.U. 1981 S)
,:rs,_/Show that for
ab b2
A=
Al=0.

e If A=[(1) é],B:[(: -(;],whe(ei2=—1.

vcrify that (A + B)2 =; A2 & BZ'
(a) Show that the matrix A = [ } l: i ]

X7

is a solution of the matrix equation
A’-5A+T1=0.
(b) If fix) =x" — 5x + 7, find fA) , where
[ 3 1
a3
4 8. Iffix) =x’-5x+6, find fA), where

(2 0 1 : ,
A=[2 1 3} (K.U. 1980)
1

-1 0

(K.U. 1980 ; M.D.U. 1983)

(K.U. 1988)

A\

[Hint. fA) = A'-5A+ 615, find A? and substitute the values of I3, A and A2.]
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v gistributive over matrix addition.
9. Prove that matrix multiplication 1 distributive 0 Moo -
(Reproduce property 2 Art. 10.10)
cos 0 sin 0
10. It =[-sin0 cos 0 n \‘»*\
Show that n-
aro[oosn® sinm® DU 1994; G.N.D.U.1981)
=| -sinn® cosnb
0o 1
1. If A=[O Ol,pmve(hal
n-1
(aly + bA)n = anlz +na" bA
for a positive integer 7. _ (M.D.U. 1993)
12. Determine all the idempotent diagonal matrices of order n.
rd, 0 0...0][d 0 0...0
2 0 d 0. 0 0 dp 0O.... 0
[HlnLlfA 53 TN | R
o 0 O0..d,|/]/0 0 O... d,
42 0 0.0
lo &* o...0
0 0 0..d?
AZ=A = d%=d; for i=1,2,..,n
= d;=0,1 for i=1,2,... ,n
Hence A = dia. [dy, dy, -...., dg] for d, dy, ...... , d, € {0, 1} is the required
idempotent diagonal matrix.]
1 1 3 ;
13, Show thatthematrixA=| 5 2 6 | is nilpotent with index 3.
-2 -1 -3
[Hint. Show A®= 0]

14." Show that the following matrices are involutory

O S -9

15. Show that the sum of two Idempotent matrices A and B is idempotent if

AB=BA=0.
Answers
0 0 0
. 1. |0 0 o 3. |1 o0
0 0 0 10 -1}

. —

I Mg
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-1 12 11 5 9 13
4. AB=|-1 7 8|,BA=|-1 2 4
-2 -1 5 -2 2 4
1 -1 -3
8 -1 -1 =-10].
-5 4 4
2 -3 4 x 10
9. A=|5 -7 8|, X=|y|,B=| 9|
3 4 11 z 15
\'/1/0,.12. Transpose of a matrix
£ Let A be any given matrix of the order m x n, then a matrix obtained
from A by ch&ginéils rows into columns and col inwis called the
transpose of a matrix A and is denoted by A’ whichwill be of the type
nxm. .
In symbols.If A = [a;]» x », then
A’ = [cgln sem, Where ¢;; = Gjp
ie, (i j)thelement of-A’ = (j; jth element of A.
For example,
1 2 3 -1
Let A=|2 -3 4 -5
6 7 -8 2
) 1 2 6
| 2 -3 7
then. A= 3 4 -8
-1 -5 2
A0.13. Theorem
i If A’ and B' denote transpose of A and B, prove that
v M@AY=A
@) A +B)'=A’ + B, A, B are conformable for addition
3) (kA)' = kA', k is any scalar
@) (AB)' = B'A’, A, B are conformable for multiplication
_ (M.D.U. 1982)
(5) (A™' = (A)", A is a square matrix, n is a positive integer.
Proof. (1) Let A = [@lm x n
. A’ = [Cijln x m» Where Cij ?a’-i
(AI)' = [dq]m xn
where d;; = ¢j; = a;;
$ (A')' = [aij]m xn=A. T
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(:) Let A= l"nlm o B= ”’”l”' xn
A + Risa matrix of order m x n
(A+B)isa matnx of order nxm
Again A" and B’ arc matrices of ordernx.m
(A'+Bhisa matrix of order 7 xm
(A+B) and (A" + B) arc matrices of the same order.
{i. Nth element of (A + B)’
= (j, 1)th element of (A + B)
= (j, Nth clement A + (J, Dth clement of B
= (i, j)th element of A’ + (i, J)th element of B'.
= (i, j)th element of (A" + B").
Thus (A+B)=A"+B"
(3) LetA= [aqlm xn
(kA)' and kA' are matrices of the same order n x m. (%, j)th element
of (kA)’
= (j, i)th element of kA
= k[(j, )th element of A]
= k [(i, j)th element of Al
= (i, j)th element of kA’
(kA) = kA
(4) To prove (AB)' = BA’
Let A=(aifl"‘ xn aIldB:[bij]n xp
A’ =[0gl, xm and B' = [B;], « », Where
o = aj and B;; = by;
Now AB is a matrix of order m x p.
(AB)' is a matrix of order p x m. Also B'A’ is a matrix of order
e ()
(AB)' and B'A" are matnces of the same order p x m. :
(%, jyth element of (AB)’

= (j, )th element of AB
2 (The sum of products of elements
2 i by
k=1

of jth row of A with corresp.
element of ith col. of B)

n

[\
£
=
S

[ oy=ajand B;=b;]

n
[\
)
&
-
&

= (i, Dth element of B'A’ (2)

=
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From (1) and (2),
(AB) = B'A’
Cor. (A, . A,..A,) =A, . A, .. A . A/
Putting A; = A, ... = A, = A, where A is a sq. matrix
(A.A.A =A A A A
: (A") = (A)
Hence (A")' = (A)", n being a natural number.

\W Conjugate of a matrix
' Let A be a given matrix of order m x n over the complex number

system, lhcn'a matrix obtained from A by replacing each of its elements by
their correspondirig complex conjugates is called the conjugate of A and is
denoted by A, where A is also of the same order m x n.
In notation we can define as
If A= [“ijlm « n, then
K = [b‘}lm X n where b,‘j = ;1-,1

For example,

[ 2+1 2 Si
Let A=|5i+7 -8 4i-3
{ 2 S5+i 4-2
_ 2-1i 2 -5i
A=|-5i+7 -8 -4i-3
| 2 S5-i 4+2
It is to be noted that conjugate complex of 5i + 7is — 351+ 7.

/10.15. Theorem
If A and B denote the conjugate of A and B, respectively, then prove
w\"") "“yhat

1.A) =A.

2.(A+B)= A + B, where A and B are conformable for addition.

3.(kA) = k X, where k is any compleX number.

4. (AB)=A.B.

5.(A)" = (A"). ‘

Proofs. Proofs for properties (1), (2) and (3) are easy and are left to the
reader as an exercise.

4.To proveE =A.B.

Let A = [aj}m x » and B= [bij]n x pr where the elements @;; and b;; are
over the complex field.
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= [l xn  WhETE 0= 05

= “"if'n xp

o »|

siid where a; = by;.
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Now AB and A. B are matrices, both of the same order m x p.

(%, Nth element of AB

(1)

= Conjugate of the (i, j)th element of AB

n

= 2 aik.bkj

k=1
n
= E a b&j
k=1
» —
= E ag bk]
k=1
n
= 2 A - ﬁk]
k=1
= (i, j)th element of A.B
From (1) and (2),
AB-A.B.
(5) To prove A= (K)"
Using the above result (4),

where the product on each side is defined.
Put Al = A2 = A,, =A

A.A.A.. . nterms=A.A.A

A= (K)", n is a natural number.

10.16. Transposed Conjugate of a Matrix %

[Using z; + 2, = 7; + z5]

[Using 5:7; = %, . 2]

k@) -

‘ TI.Jc transposed of the conjugate or conjugate of the transpose of a
matrix A is called Transposed Conjugq{e of A and, i§ denoted by Alor by A*.

Thus
: A®= (A) = (A).
Thus if A = [a], then A® = [a;] where o,

. Le. (i j)th element of A® = The conj
of A. For example, if

ij = Qi

ugate complex of the (j, i)th element

54
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then

1-2i
-7
0

[1 +2i
-
0

A= (A) =|2-3i

271

2430 4
8i 5
6i+5 4

2-3i 4

-8 5
-6i+5 4
142 -7 0

-8 -6i+5
4 5 4

10.17. Theorem. If A% and B® be the transposed conjugate of A and B

1.(A%%=A
2.(A + B)? =A% + B, A, B are of the same order

3. (kA)® = kA", k is any complex number

4. (AB)® = B°A® A, B are conformable for multiplication.

Proof.

1.
2.

3;

4.

respectively, then
P

A =(@A)) =@ =A

(A+B)°=((A+B)) =(A+BY

=(A)+ (@) =A"+B°
(kA)° = (kA) = (KA =k (A

=k A®
(AB)° = (AB)' = (A B’
= (B) (&) =BA".

10/ ~Symmetric Matrix
Def. A matrix A is said to be a symmetric matrix if A’ = A, i.e. if the

transpose of a matrix is equal to itself.

A= [aij]mxn

(- -
A’ = [0j]nxm Where o = aj;.

Let

The matrix A will be symmetric, if and only if,
A=A
Le. if and only if m = n and a;; = a; = a;;. Thus we have

Definition. A square matrix A = [ a;] is symmetric if a;; = a;; for all {

andj, ie.

A square matrix is symmetric if and only if (i, j)th element = (j, )th

element.
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EXERCISE 10 (V)

ive one suitable example in cach case
(i) Symmetric matrix

() Hermitian matrix

. Define the following and g
(?) Transpose ol a matrix

| (@) Skew-symmetric matrix

o Skew-Hermitian matrix.

Find the transpose of the following matrices and point out it any of them is

symmetric or Skew-symmetric

a b e o 5 7
ajp kom @f-5s o 1
c m X -7 =11 0

¢ i 0 [0 i] a2__
3. t:—\:[o _.}. B= _i 0],1- 1

14

Verify that (AB)' = B'A". ‘.
5 2 4 6

1 3
4. IfA=[-1 -3 7|andB=| 0 -2 -4},
0 -5 —7J -6 8 -8

Verify (AB)' = B'A". (M.D.U. 1994)

ol 3

Verify that (A2 = (A')>

[2+30 & i 2+l
\‘/ﬁ“[ms o]’ B=[2—i - ]
Verify that (E) =A.B.
7. Prove by an example of a matrix 3 x 3, that if A is a lower triangular matrix,
%4 4 . then A'is an upper triangle matrix. '
8. IfAandBare symmetrfc, show that (AB + BA) is symmetric and (AB — BA)
is skew-symmetric.

9. HA:[i O]andB:’[O. i],
-1 0

0 -i
verify that ~ (AB)® = B? A°. (M.D.U. 1993)
0 1+ 2+3i
1¢.  Show that the matrix | 1-i 1 -i |is Hermitian. (M.D.U. 1993)

2-3 =2 0

2 1+i 2+3i
11. Showthat()A=| 1-i 1 -i |is Hermitian.
2-3i | 0
2i 1+ 2-3i . :
@B=| -1+i 5i 2 |is Skew-Hermitian. (M.D.U. 1994)
-2-3i -2 0 | '

(#é) iB is Hermitian.
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12 If A is a Hermitian (Skew-Hermitiany matrix, then show thit 2 A s Skew-
Hermitian (Hermitian),

13.  Show that every square matrix can be uniquely expressed = the sum of 4

Hermitian and a Skew-Hermitian matrix, (K.U. 1958)

[Hint. Write. A =2 (A + A% 41 (A-A") = P+ O and show that PP = P and

0"=-0,]
14. If A and B are Hermitian, show that
(i) AB + BA is Hermitian
(if) AB - BA is Skew-Hermitian.
(#ii) AB is Hermitian if and only if AB = BA.
(iv) BAB and ABA are Hermitian.

(KU. 1991 5)
(KU. 1991 S)

Answers

b ¢
k  m | (Itis a Symmetric Matrix)
m x

N
~
Nad)

(S i N}

0

-5 =1
0 -11 |(Itis a Skew-symmetric Matrix).
11 0

(©)

N wn o

./10.20. Definition. Determinant of a Square Matrix

() If A = [ay1] is a square matrix of order 1 x 1 over a field F, then
determinant of the matrix A is the number a;; € F. Thus
det A= IAI= a

@ If A= a ayp ... as,

be a square matrix of order n x n over a field F, where n = 2, then we write
determinant of A as

detA=|A|
@ a3 Aypeeee.... ay,
=|ay apn........ a2y =
Ay Ay @
= (1) g det Ay + (- 1)*2 g det Ap + ......
+ (—- l)i”‘ (5% det A,‘,,
n
= 2 (- )™ g det A;
j=1
n

2 a; (= 1) det A; (1)

j=1
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is a sub-matrix of order (n — 1) x (n— 1), obtained by deleting the

where A;;
: f matrix A and determinant of A;jis defined by applying

ith row and the jthcol. o

induction on n.
n

det A= E a;. (- 1)/ det Aj; is called expansion of det A by the
j=1
ith row. Similarly, we can write
n

detA= Y aj;-(- 1)™ det Ay
i=1
It is known as expansion of det A by the Jjth column.
We observe that det A is a scalar € F. Thus, a determinant is a function

on the set of all n x n square matrices over the field F.

_~1021. Definition. Minor of an Element

\‘/0 If A = [a;] is any square matrix, then det-A;; called the minor of (i, j)th
entry a;; of A and may be denoted by M;;.

7L/ 22. Co-factor of an Element

. If A = [a;] is any square matrix of order n x n, then (- 1) det Ay is

called the co-factor of (i, j)th entry A;; of A, and may be denoted by C;;. Thus
C;j = Co-factor of (, J)th entry of a matrix A
= (- 1)"/ det A;;, where A;is the (n — 1) x (n - 1)

sub-matrix of A, obtained by deleting the ith row and the jth col. of A.

Remarks :
In terms of co-factors, the expansion of the determinant of a square matrix

A = [aj]pxn-is
n
detA= 2 a;i C;j (expansion by ith row)
j=1

n
= 2 a; C,-j (expansion by jth col.)
3 |
'10.23. An important Property

an Gy ag
IfA= ‘a21 an ap ’then

dz; @3 daz

3
® E a;Ci=detAifr=i
J=1

3
(@) 2 a; C;=0  ifrwi
j=1

LA o et o e g

-
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Proof. (f) When r = i,
3

E a; C,']'

j=1
=a; Ciy+apCpp +a3Ca [Take i =1 (or 2 or 3)]
=ayCyy + aCr2 + a13Cy3
_ 2| @22 423 3| a4n a3
=ay.(=1) +ap.(=1) i
aszx; as; as; 33
a a
. qya | 921 922
+a3. (— 1)
as; as

an axp ay a; axp
=an —az +ag3

asy as3 asz asz asz as
=dag det All —-ap det AlZ + a3 det A13
=det A.

(@r=i
3
2 a;; Cyj = aiCpy + aCp + a3C3
j=1 .
Taking i = 1 and r = 2 (say)

=a1;1Cy1 + a12Cp + 413C3

=ay; . (- 1) det Ag + ayy . (- 1)* det Ay

+ a3 . (— 1)5 det A23
a G
as; a3

a;; a3
asz; ass

ap apg

+ ayy
az; as e

—aj

=—-an

= — a11(012-033 — a13.037) + a12(a11.033 — A31413)
— ay3(ay1.33 — a12.031)
= —a11a12a33 + a11313@3; + @11312033 — 41231313
—a11813a3; + a13d12431
=0.
. Remark. The result is quite general and holds for determinants of square
matrices of all order. Thus if A = (@il nxns then

n
1) 2 a;Cj=detAifi=r
j=1

] -
=0 ifixr
(2) IfA is a square matrix with any one line consisting of zero elements, then
detA =0 [ a;=0forsomeiorj]

(3) If A is triangular matrix, then
det A = product of the diagonal elements.
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A, O 0
=10 Al 0 [‘.' alAl + blBl + Clcl =A
0 0 Ay @Az + bBy + ¢1Cy =0 etc ]
=Af
A=A

A B G a by ol
Hence A, B, GCl=|a, by ¢
A3 B3 C3 as b3 C3
Adj@e determinants or Reciprocal determinants. If all the ele-
ments in a determinant A be replaced by their co-factors in A, then the
determinant so obtained is called Adjugate or Reciprocal of A.
For example in the above example A, is adjugate of A;. In general if
A, is of nth order, then A, = A",

EXERCISE 10 (d)

1 2 3 1- 4 3

1. IfA=|-1 0 5|,B=[-2 6 7
0o 7 -2 5 1 1

Verify that det. (AB) = (det. A) (det. B).

[1+7 ¢ 5i+2

2 A= 5 -1 0
2¢i 1 7

Verify that det. A = (det. A)
where the bar indicates the complex conjugate.
3. IfAA'=Lthen|A|==1. -
4. 1A' is the reciprocal determinant of a determinant A of order n, then
A’ = A", (proceed as in example 5).
5. Prove that if A and B are two square matrices of order n, then
() |A'B|=|AB'| =] A'B'| =| AB|

A°B®| =| AB|.

. Adjoint of a Square Matrix
/*  Def If{i = [a;] is a square matrix of order n, and A;; is the cofactor of
a;in|A |, then the matrix
An  Ajye Ay
[Aij], = 51 :
Ay Agnd,,

is called the adjoint of A and is written as adj. A.

i

-

B0 T

SRS
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\/mwr words. To find adjoint of square matrix A, replace each
element of A by its co-factor in | A | and take the transpose, the matrix so

obtained will be adjoint of A.
Example 1. Calculate the adjoint of A

)

a b
c d

Co-factorof a, (1, 1)th element = (- 1)? | d| = d
Co-factor of b, (1, 2)th element = (- 1)2| c | = —¢
Co-factor of c, (2, 1)th element = (- 1)* | b | =—b
Co-factor of d, (2, 2)thelement = (—1)*| a| = a

el £ ]2 2]

Sol. |A|=

-b a -c a
Example 2. Cajculate the adjoint of the diagonal matrix
d 0 0
A= 0 d2 0
0 0 d;
Sol. Co-factorof dy = 12 |2 0 | =aa
. 1 . 0 d3 2 3‘
d 0
Co-factor of d, = (-)*, 01 4 J =dyd,
di. 0
- 6 | B _ .

0.7 [dds O 0

. ddy; 0
Adj.ofA=| 0 ddy 0 |=| 0 dd O
0 0 dd, 0 0 dqd,

This shows that adjoint of a diagonal matrix is a diagonal matrix.
Example 3. Calculate the adjoint of A, where
' [ 1 2 3
g A=| 1 -1 2
4 2 1

Sol. Co-factor of 1, (1, 1)th element

_ 2|-1 2|_, 1 o__
=1 |7, |=E1-2=-3
Co-factor of 2, (1, 2)th element o v
— (13 1 2 oo “= -5
=17 s 117 (1+4)
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Co-factor of 3, (1, 3)th element "
-1 )
e ) 1’=(1—2)=—1 oy
= [ailan....ai"] (X3j
Co-factor of 1, (2, 1)th element :
3 2 3 = = = x (1,,]'
= (_ 1) 1 1|~ - (2 3) 1 : = a;)0y; + a0y # somenns + ;z0pj
= ailAjl + a,~2A1~2 F ssvine + a,-,,A]-,, (1)
X = 1 t "
Co-factor of -1, (2, 2)th elemen ¢ Now we know from determinants that in a determinant | A | if the
=1 Vo3 (1+6)=7 ; elements of any row are multiplied by their corresponding co-factors and
-2 1 added, the result is | A | , and if elements of any line are multiplied by the
Co-factor of 2, (2, 3)th element co-fact(:[r; of a;y I-}I)z;rallfl ;J)ne (a;m; ?dd.ed, then the result is zero.
A us, RHS.of (1) =0ifi=
® 1 2 3
=C)’|_, [[=-@+9=-5 =jAifi=j
1 Thus (i, j)th element of A(adj. A) =0 (i =)
Co-factor of — 2, (3, 1)th element =|Alifi=j
1) 2 3|_ @+3)=7 This shows that all the diagonal elements of A (adj. A) are each equal
‘ =CU_y fF - 'L to | A | and non-diagonal elements are zero. ‘
.. 0
Co-factor of 1, (3, 2)th element LA | | 10\ | g 0
=1y } ; =—(@2-3)=1 Hence A (adj.A)=|0 0 |A] .. O
, ©v o D i
Co-factor of 1, (3, 3)th element |Al
1 2 ‘ 1 0 0 0
=)' _j[=¢C1-2)=-3 , 0o 1 0 0
=|A]|0 0 1 0 |=|AlL
-3 -5 -17 [-3 1 7
Adj.ofA=| 1 7 -5|=|-5 7 1]. 0 0 0 1
7 1 -3 -1 -5 -3 \ Similar}y,
’ ( (4 j)th element in (adj. A) A
M 8. Theorem. If A be a n-square matrix, then prove that W @y l
0. A(@dj. A) = (adj. A) A= |A| I, (K.U. 1995 S) : @y
\/ where I, denotes the unit matrix of order n. i = [0 0 .. 0|
; Proof. Let A = [a;] be n-square matrix. l C
Adj A =[Ay], where Ay; is co-factor of 4;;in | A | I' a,;
= [aijlr where aq = Aji ]; = ilalj + 0'1'2"2} + .o+ o'inanj
To find the product of A (adi. A) = A+ Agi G+ o+ Ay
(3 j)th element of A (adj. A) ? = @yfAgi + agAg; + ... + BpBai
= sum of the products of the corresponding elements of the =|A| ifi=j
ith row of A and the jth col. of adj. A =0 } ifinj (By remark Art. 10.23)



or

TOPICS IN ALGEBRA

1 0 0 .. 0
0 0 O U

(adj. A) (A) =|A]] 0 0 [=]A]l,

[« SN
—

s e 1
Hence A (adj. A) = (adj. A)A = |A| L,
“Cor. If A is a non-singular matrix of order n, then
|adj. A|=]|A]™!
Proof. .~ A (adj. A)=|A|I
Taking determinant of both sides
|Aadj. A) | =[| AT] .
|Alladi.Al<|Al" [ |AB[=|A|IB],|1]=1]
But [A|=0, dividing by | A |
|adj. Al=]|A[™.

\ Example 4. Find the adjoint of matrix

2 1 3
3 1 2
1 2 3

and verify the theorem A(adj. A) = (adj. A)A = |A | L.

(M.D.U. 1980 S ; K.U. 1995 A)

2 1 3
Sol. [A]={3 1 2
1 2 3

operate Col. 1 -2 Col. 2 ; Col. 3—3 Col. 2

0o 1 o
1 -1
=l 1 1 -1]=- =-(-3-3)=6
-3 2 -3 ,'3 "3,
Co-factor of 2, (1, 1)th clement = , ; 2 l =3-4=-1
3 2
Co-factorof 1, (1, 2)thelement = — 1 3[=-0-2=-7
Co-factor of 3, (1, 3)th clement = | 3 |=6-1=s
Co-factor of 3, (2, I)th clement = — ; g =—(3-6)=3

Co-factor of 1, (2, 2)th element = f f; =6-3=3

Co-factorof 2, (2, 3)th element = - =-(4-1)=-3

R

e
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1 3
Co-factor of 1, (3, 1)th element = ’ | 2 ’ =2-3=-1
2 3 C _5
Co-factorof 2, (3, 2)th element =~ | 5 5 | =-(4-9) =
Co-factor of 3, (3, 3)th element = (— 1)° § ’ I =2-3=-1
-1 -7 571 [-1 3 -1
Adj.A=]| 3 3 -3 =|-7 3 5
-1 5 -1 5 -3 -1

A@d.A)=|3 1 2{|-7 3 5

[2(~-1)+1.(-7)+3523+13+3.(-3)2(- 1)+ 1.5+3.(- 1)
=[3.(-1)+1.(-7)+2533+13+2.(-3)3(-1)+1.5+2.(- 1)
1.(-1)+2.(-7)+3513+23+3.(-3)1.(- ) +25+3.(- 1)

(60 0 1 0 0
={0 6 o0|=6|0 1 o0f|=|A|L
0 0 1

0 0 6

A(adj.A)=]A|L.
Similarly, it can be shown that (adj. A)A=]|A| .13
Hence the verification.
Example 5. Prove that adjoint of a unit matrix is a unit matrix.
Sol. Let I, be the unit matrix of order n.
(& j)th element of adj. I, = Co-factor of (j, i)th element in I,
=1lor0accordingasi=jori=j
(- In a unit matrix, co-factor of diagonal element is 1
whereas co-factor of non-diagonal element is zero)
Thus adj. 1, =1,

.—Example 6. Prove thatadj. A’ = (adj. A)', where A is any square matrix.

Sol. Let A be any square matrix of order n, then adj. A’ and (adj. AY

are both square matrices of order n.

(% J)th element of (adj. A)’
= (), 9th element of (adj. A)
= the co-factor of (4, j)th element in the matrix A
= the co-factor of (j, i)th clement in A’
= (i, Hth element of adj. A’
Hence adj. A’ = (adj. A)'.
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E ple7.IfAisa cymmerric matrix, then prove that adjoint A is also
'xam AJALSES,

symmetric. _ . ‘ A
» J - + 3 symmetne matnx, then A' = '
Sol b Adb( A)'-- adj. A’ (Prove as in Example 6)
(adj. = ad).

= adj. A [ A'=A]
(adj. A)is a symmetric matrix.

EXERCISE 10 (¢)

1. Define adjoint of a matrix. . .
J. 2. Calculatg the adjoints of the following matrices :
B 3 2 O 35 7
2 1| A _@l2 -3 1
5 3 ] " 1 1 2
(az) f :; ; . (K.U. 1992)
4 1 2
3. (a) Given a triangular matrix
- (2 3 1]
A=|0 1 2
0 0 1
find adjoint matrix of A. Is adjoint A also a triangular matrix ?
{b) Given a symmeiric matrix
‘2 kgl
A=|r b f
g f ¢ )
By finding the adjoint of A, show that adjoint of A is also a symmetric matrix.
(1 2 3] 1 0 O
~4. If A={1 3 4|,3=|0 1 O
1 4 3 0 0 1

Verify A (adj. A) = (adj. A)A = | A| L,

where | A | = determinant of-A. (KU. 1975 S, 76)

o 5. ffid'the adjoint matrix of
cosa -sina O}
A=|sina cosa 0
0 0 1
and verify that

A(adj. A) = (adj. A) A =| A |1

where L is the identity matrix of order 3. (M.D.U. 1981 5)
Answers
_ 11 -1 -7 -3 26
-2. ®lo 3 -1 @l-3 -1 11
0o -5 2 5 2 -19
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1 -3 5
3. (a)adj.A=|0 2 -4 |, Yes
0 0 2
L
[ be-f#  fg-ch  hf-bg
(b) fg-ch ca- gz gh-df
hf-bg gh—af ab-hk

which is also a symmetric matrix.
7_@1.029. Inverse of a Square Matrix

rS:(n Definition. Let A be an n-square matrix. If there exists an n-square
matrix B such that

E!e matrix A is said to be invertible and the matrix B is called the inverse of
Note 1. From the definition given above, it is very clear that if B is the inverse
Of A, then A is also the inverse of B,
2. A non-square matrix does not have any inverse.
Morem. Inverse of a square matrix, if it exists is unique.
< . (M.D.U. 1980 S ; K.U. 1980)
Proof. Let A be any n-rowed square invertible matrix.
If possible, let B and C both be inverses of A.

AB=BA=], (1)
] [~ Bisinverse of A]
and AC=CA=]1, -(2)

) ['- Cis mverse of A}
Since A, B, C are all square matrices of the same order n.

-

The product CAB is defined and
CAB = C(AB) = CI, [Using (1)]
Nl ~(3)
1 Again, CAB =éCA)B =L.B [Using (2)]
' From (3) and (4), we get 9
B=C

Thus, inverse of A is unique.

_ ote. The inverse of A shall, in general, be denoted by AL
$ / 0. Singular and Non-singular matrix
p %

Def. A squarematrixA is said to be singular or non-singular according
as|A|=0or|A|=o0.

1

.14
g For example, the matrix [ P §]is singuiar andi 9 ;]is NOR-SiR

gular.
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A631. Theorem
Vc . The necessary and sufficient condition for a square matrix A to
ss the inverse is that | A | = 0 (i.e, A is non-singular).
p—_— (KU. 1995 A, 92 ; M.D.U. 1980)
Proof. The condition is necessary. Given that A is invertible (e, A

possesses inverse), to show that A is non-singular.
- A possesses inverse.
t B be the inverse of A.
“ AB=BA=1, [By def. of inverse]
Taking determinants, we get
|AB|=|BA|=|L|=1

ie., |A].|B|=1=0
But | A | and | B | are scalars (numbers)
y |A]=0.

A is a non-singular matrix.

The condition is sufficient. Given that A is non-singular. To show that

A has inverse.
- Aisnon-singular, .. |A[=0
dj. A
Consider the matu'xB:il"ﬂ
dj. A 1 :
Now AB=A.(3|—3W)=I—A—I(A)(ad].A)
1. '
=|_A_|IA'In=In
adj. A 1 ;
Also BA:_( [A] ) =T1\_|(adj'A)(A)
"
-|—A—|IAII.=I..
Thus, AB=BA=\I,
A is invertible and B is its inverse.
Al= =—J—ad"A
lA]
Remember. If A is non-singular, then
Al A
1A]

: Note. The above theorem gives us one of the methods to compute the inverse
of a non-singular matrix. We illustrate the method by examples given below.

MATRICES

. WIhe inverse of matrix
a b

T

where ad - bc = 0.
Sol. Given matrix is

b
A=[‘C’ d] -~ |Al=

=ad—-bc=0
Le., Aisnon-singular, .. A possessesinverse

. [d -c]_[d -b

e R Ry
d -b

Al 2diA_|ad—bc ad-bc

i.A
[Al = _-c a
ad - bc ad - bc

297

(K.U. 1979 S)

a b
c d

[ |Al=ad-bc]
Remark. This example gives the inverse of every non-singular 2 x 2 matrix
for different values of the element 2, b_c, 4.

\ﬁ.\mﬁple 2. D is thé diagonal matrix
‘ Tdq 0 o o

0o d 0 0
0 o0 d; 0
0 0 o0 d,

where none of the elements d,, d,, d;, d, is zero. Find D™!. (M.D.U. 1991)

d 0 0 0 ]
0 d, 0 0
Sol. =
. = 0 0 dy; 0
LO» 0 0 d,
d 0 0 0
0 d 0 0
Di=
| | 0 0 d 0
0 0 0 d,

=dydydyd, = 0 [" none of dy, d,, d;, d; is zero)

0 o0}
Now co-factorofd;=(-12 o0 d; 0 |= dydyd,,
0 0 d,

» Similarly, co-factors of d,, ds, dj are respectively dydsd, ; dydd, ;
d1 3. g
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0
dydsds
2‘(1) ddyds 0 0
adj.A= 0 0 d1d2d4 0
0 0 0  didyds
Adj. A _ Adj-A
Now A™ =714 = Zddd,
[1 o o0 O
d
1
— 0 0
0 4
= 1
1
0 0 7
1
0 —
0 0 |
d—l 0 0 0
(01 o't 0 0
“lo 0 dt 0 .
0 0 0 dy

Hence if D =.diag. [db dg, d3, d4], where dldzd3d4 =0
then D= diag. [d,7, &7, d57, dg7Y).
Memnrk. The method is quite general and can be extended to a non-singular_
diagbnalmy order.
xample 3. Find the inverse of the matrix A given by

< 9 5 6
7 A=|7 -1 8]. (Type K.U.1994 A ; M.D.U. 1979 S)
o 3 4 2
Sol. Here
9 5 6
[Al={7 -1 8
3 4 2
Operate R; -3.R,,
10 -7 0
|Al={7 -1 8
3 4 2
and by Row 1
Expand by \‘7
'Al.-(-‘,) 3 g .7(14—24)_3—70010.

f
{
/I
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A is non-singular and A™! exists

" ~34 10 31] )
adj.A=| 14 0 -21, (Replacing each element

46 -30 -4 | by its co-factor)
[-3% 14 46 ]
ie adj.A=| 10 0 -30

31 -21 —44J

=34 14 46 ]

70 Z70 ~70

4_adiA | 10 100 -30

e A [A] T|Z70 —70 oo

31 21 —44
=70 =70 70

17, -1 -3

35 5 35

' -] =1 3
Le., A = 7 0 =
13 o»

70 10 35

32. Theorem [“prdero [ .
(@) ILA is invertible, then so is A and (A~Y) = A_ (K.U. 1976)

(b) If A and B are square matrices of order n, then AB is invertible
if and only if A and B are invertible and then

AB)' =B A", (M.D.U. 1981 S ; K.U. 1989)
Proof. (a) As Aisinvertible . A exists
and AAT=ATA=L '

This shows (by def.) that A™! is also invertible and inverse of Al is A
ie, AY)l=A '

®) |AB|=|A].|B]

IABI-eO,ifandonlyiflAI:Oand|B|=e0
ie, ABis non-singular, if and only if A and B are both non-singular, which
is the same as

, ABisinvertible if and only if A and B are invertible,

Let A and B be invertible and their inverse be A-! and B, All these
matrices A, B, A", B! are squared matrices of same order n. '

Now (AB) (B'A™") = ABB A ~ [Associative law]

=(ADA™ = AAT =]
Again (B'A™)(AB) = B(A'A)B=B"1IB
' =B7B=]
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1 n-!and (AB)! all exist.
X AIB and ( Sosineuls tri
Also we know that for cvery non-singular matrix P,
o adj. P
“ TPl
» adj. P=|P|F ~(1)
putting P = AB in (1), we have 1
adj. (AB) = | AB| (AB)"
=|A [|B |BA (Reversal Law)
A|[B] adj. B adj. A
=IANPTTBT Ta]
= (adj. B) (adj. A).
EXERCISE 10 () -
1. Define the inverse of a matrix, and show that whenever it exists, it is unique.
2. Prove that a square matrix A is invertible if and only if, | A | = 0, where | A |
denotes the determinant of A. _ (K.U. 1973
3. Prove that the inverse of product of two matrices is equal to the product of their
inverses but in reverse order. (M.D.U. 1981 5)
4. Calculate the inverse of the following matrices whenever exists :
®l2 -3 1 @) 1 3 -3 (MD.U. 1981
112 ~2. ~4 -4
1 2 1 .
@3 1 2 (KU. 1991 5)
01 2 .
0 0 1
5. IfA=]0 1 0
100 ,
Show that A = A. (M.D.U, 19805)
6. Let A and B be invertible square matrices of order n. Does (A + B) ™ exist ?
Justify by giving example.
7. If Bisnon-singular, prove that
|B7 AB|=|A]

A and Bbeing square matrices of the same order.
8. IfAisann-square non-singular matrix, prove that

ladj.Al=] AP
(Hint. Reproduce Ex. 2 Page 301 ] :
9. Ifthe I_lon-fmgular malrix A is symmetric, prove that A™" is also symmetric.
10. Ifthe matrices A and B commurte, then A™! and B! are also commute.
" Answers
‘0 7 3 -2
- @ 3 1 -n 1o
6.A= :
=5 2 19 4 [ 0 1 ] 4

3 ;

~
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3 1 3/2 -1 0
()| -5/4 -1/4 -3/4 B:[ 0 _1]
-1/4 -1/4 -1/4
7. Not necessarily.

ORTHOGONAL AND UNITARY MATRICES

10.34. Orthogonal Matrices
A square matrix A is said to be orthogonal if A’A = AA" = L.

ie, if A=A
’ 0 1 1 0]
For example, the matrices [ 1 0] ; [ 0o -1’
11 1]
Vi V6 V2
cos@ -sin®] | 1 2 0
sin® cos@|’|V3 V6
1 1 1
v3i V6 V2

are orthogonal.
- [One can verify AA’ =1 in each case.]
Every identity matrix is orthogonal.

10.35. The determinant of an orthogonal matrix is + 1

7 For, if A is an orthogonal matrix, then
AA'=1
= |AA'| =1}
= |A].]A'|=1 (- |AB|=]A|.|Bland|I|=1)
= |A].|A|=1 ¢ 1A']=1AD
= |AP=1 = |A|==1.

An orthogonal matrix is said to be proper or improper according as
its determinant is I or — 1.
Note. (i) If A is an orthogonal matrix with | A| = 1, then each element of A is
equal to its cofactor in | A |.
~ (#) If A is ‘an orthogonal matrix with | A | = - 1 then each element of A is equal
.é to the negative of its cofactor in | A |.
0.36. Theorem
g The inverse and transpose of an orthogonal matrix are orthogonal.
Proof. Let A be an orthogonal matrix so that -
AA'=1=A'A
Taking inverses, we have
AAY =T
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= Ayt .At=1

= (A . AT =1

= A7lis orthogonal.

Also, AA'=l = (A'YA'=1 = A'isorthogonal.

10.37. Theorem
The product of two orthogonal matrices of the same order is orthogonal.

(K.U.1991)
Proof. Let A and B be two orthogonal matrices of the same order so

~

that
A'/A=AA'=1and BB=BB'=1
Now, (AB)'(AB)=(B'A’)(AB)=B'(A'A)B
~ =BIB=BB=I

Hence AB is orthogonal.

Example 1.IfA is a real skew-symmetric matrix such that A + I = O,
then A is orthogonal and is of even order.

Sol. Since A is real skew-symmetric matrix, we have

Al=—-A
= AA'=-AA
= AA'=—A?
= AA'=1 (- A*+I=0 = -A?=])
=> A is orthogonal.
Also, |AA'[=|AP=1
= 1A |=0.
Since A is skew-symmetric and | A | = 0.
A is of even order. .

[ ByEx.3.Page 284; Determinant of a skew-symmetric matrix of
odd order is always zero).

Example 2. [fA and B are two non-singular matrices of the same order

;uch that AA' =BB', show that there exists an orthogonal matrix P such that
=BP.

Sol.Since ~ AA’=BB)
A and B must be of the same order.
Let A=BP
= P=B'A (. Bis non-singular, . B exists)
Now, PP'= (B™A) (B~'A)
=BT A) A (BY)
s B-l ( AAI)(BI)-I
= B-l(BBI)(BI)—l (,.. AIA = BBI)

=(B"'B)(B)®B) ) =LI=]
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=> P is orthogonal.
Hence, there exists an orthogonal matrix

P(= B™ A) such that A = BP.
10.38. Unitary Matrix

7 Asquare matrix A is said to be unitary if A°%A = I = AA°.
ie, iffA%=A"

o

Y

F 1 .
or example, A 1+i 1-i

1 1-i -1-i] 1[1+i -1+
For, APA=— i .= . .
. A 2[—1—1 1+1] 2[1+z -1—1]
1

’4[0 4]‘L

Note. If each element of A is real, thenA =A
. A=
* APA=T = AA=I
o Unitary matrix over R is an othrogonal matrix.

10.39. Theorem
) (i) The transpose of a unitary matrix is unitary.

(i) Conjugate of a unitary matrix is unitary. .

(iit) Conjugate transpose of a unitary matrix is unitary.

(iv) Inverse of a unitary matrix is unitary. (K.U. 1989 S, 90°S)

(v) Product of two unitary matrices is unitary.

(vi)-The determinant of a unitary matrix has absolute value 1.

(K.U.1989 S, 90 S)

1+i =1+1i]. . .
1S a unitrary matnx.

Proof. (i) Let A be a unitary matrix.
A°A=1
(A°AY =T
A A% =1
AAY =1 = A'A)=I
A is unitary.
(%) Proof is simple.
(iii) Proof is simple.
(iv) If A is a unitary matrix, then
A°A=1
= sA"A)*: I
= AlAH =1
= AlAN =1
1 = Alisunitary.
(v) Let A, B be two unitary matrices.
: A°A=1=AA°

=

=

¢ =
=
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